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Abstract 

Non-monotonic inference is inference that is defeasible: in contrast with deductive inference, 

the conclusions drawn may be withdrawn in the light of further information, even though all 

the original premises are retained. Much of our everyday reasoning is like this, and a non-

monotonic approach has applications to a number of technical problems in artificial 

intelligence. Work on formalizing non-monotonic inference has progressed rapidly since its 

beginnings in the 1970s, and a number of mature theories now exist – the most important 

being default logic, autoepistemic logic, and circumscription.  

 

Main text 

In most logical systems inferences cannot be invalidated simply by the addition of new 

premises. If an inference can be drawn from a set of premises S, then it can also be 

drawn from any larger set incorporating S. The truth of the original premises 

guarantees the truth of the inferred conclusion and the addition of extra premises 

cannot undermine it. This property is known as monotonicity. (The term is a 

mathematical one; a monotonic sequence is one whose terms increase but never 

decrease, or vice versa.) Non-monotonic inference lacks this property. The conclusions 

drawn are provisional, and new information may lead to the withdrawal of a previous 

conclusion, even though none of the original premises is retracted.  

Much of our everyday reasoning is non-monotonic. We frequently jump to 

conclusions on the basis of partial information, relying on rough generalizations – 

that people usually mean what they say, that machines usually work as they are 

designed to, that objects usually stay where they are put, and so on. We treat these 

conclusions as provisional, however, and are prepared to retract them if we learn that 

the cases we are dealing with are atypical. To take an example that is ubiquitous in the 

literature, if we know that Tweety is a bird then we may infer that Tweety flies, since 

we know that birds typically fly, but we shall withdraw this conclusion if we learn that 

Tweety is an atypical bird – a penguin, say.  

An important feature of inferences like this is that they are sensitive to the absence 

of information as well as to its presence. Because we lack information that Tweety is 

atypical, we assume that he is not and proceed on that basis. (That, of course, is why 

the acquisition of new information can undermine the inference.) In standard logics, 

by contrast, inference is sensitive only to information that is explicitly represented, 

and we would need to add the premise that Tweety is not atypical in order to reach the 

conclusion that he flies. This feature of non-monotonic inference makes it highly 
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useful. We do not have the time or mental capacity to collect, evaluate, and process all 

the potentially relevant information before deciding what to do or think. (Think of 

everything we would need to know in order to be sure that Tweety is not atypical – 

that he is not a penguin, not an ostrich, not a hatchling, not injured, not tethered to 

the ground, and so on.)  

Because of its central role in commonsense reasoning, non-monotonic inference 

has attracted much interest from researchers in artificial intelligence – in particular, 

from those seeking to model human intelligence in computational terms. The 

challenge has been to formalize non-monotonic inference – to describe it in terms of a 

precisely-defined logical system which could then be used to develop computer 

programs that replicate everyday reasoning.  

Non-monotonic logic also has applications to more specific problems in artificial 

intelligence, among them the so-called frame problem (McCarthy and Hayes 1969; see 

also FRAME PROBLEM entry). In order to plan how to reach its goals, an artificial 

agent will need to know what will and what will not change as a result of each action it 

might perform. But the things that will not change as a result of an action will be very 

numerous and it would be impracticable to list them all in the system’s database. A 

more efficient solution would be for the system to reason non-monotonically, using 

the rule of thumb that actions leave the world unchanged except in those respects in 

which they are known to alter it. Another application is in the area of database theory. 

Here it is often convenient to operate with the tacit assumption that a database 

contains all the relevant information and to treat as false any proposition that cannot 

be proved from it. This is known as the closed world assumption (Reiter 1978). Again, 

this involves a non-monotonic inference relation, since the addition of new data may 

permit the derivation of a proposition which was previously underivable and had thus 

been classified as false. Further areas of application include reasoning about natural 

kinds, diagnostic reasoning, and natural language processing (Reiter 1987, McCarthy 

1986).  

Work on formalizing non-monotonic inference has progressed rapidly since its 

beginnings in the 1970s, and there is now a large body of mature work in the area, 

much of it highly technical in character. (For a collection of seminal papers, see 

Ginsberg 1987; for surveys of the field, see Brewka et al. 1997 and the articles in 

Gabbay et al. 1994. Antoniou 1997 offers a relatively accessible introduction to the 

area.)  

One of the most important non-monotonic formalisms is default logic, developed 

by Raymond Reiter (Reiter 1980). This involves supplementing first-order logic with 

new rules of inference called default rules, which have the form  

p : q  

r 

where p is known as the prerequisite, q as the justification, and r as the consequent. 

Such rules are to be read, ‘If p, and if it is consistent with the rest of what is known to 

assume that q, then conclude that r’. In simpler cases (‘normal defaults’), q and r are 
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the same, so the rule says that, given the prerequisite, the consequent can be inferred, 

provided it is consistent with the rest of one’s data. Thus the rule that birds typically 

fly would be represented as  

Bird(x) : Flies(x) 

Flies(x) 

which says that if x is a bird and the claim that x flies is consistent with what we know, 

then we can infer that x flies. Given that all we know about Tweety is that he is a bird, 

we can therefore infer that he flies. The inference is non-monotonic, since if we 

subsequently acquire information that is inconsistent with the claim that Tweety flies, 

then the rule will cease to apply to him.  

The application of default rules is tricky, since it is necessary to check their 

justifications for consistency, not only with one’s initial data, but also with the 

consequents of any other default rules that may be applied. The application of one rule 

may thus block that of another. To solve this problem, Reiter introduces the notion of 

an extension for a default theory. A default theory consists of a set of premises W and a 

set of default rules D. An extension for a default theory is a set of sentences E which 

can be derived from W by applying as many of the rules in D as possible (together 

with the rules of deductive inference) without generating inconsistency. An extension 

of a default theory can be thought of as a reasonable development of it.  

Another approach, closely related to default logic, is autoepistemic logic (Moore 

1985). This turns on the idea that we can infer things about the world from our 

introspective knowledge of our own minds (hence the term ‘autoepistemic’). From the 

fact that I do not believe that I owe you a million pounds, I can infer that I do not owe 

you a million pounds, since I would surely know if I did. Building on this idea, 

autoepistemic logic represents rules of thumb as implications of claims about one’s 

own ignorance. For example, the rule that birds typically fly can be represented as the 

conditional claim that if something is a bird and one does not believe that it cannot fly, 

then it does fly. Given introspective abilities, one can use this claim to draw the 

defeasible conclusion that Tweety flies, based on one’s ignorance of reasons to think 

he cannot. This approach can be formalized using the apparatus of modal logic, with 

the modal operator L interpreted as ‘It is believed that’. 

A third approach is circumscription (McCarthy 1980, 1986; see also Lifschitz 

1994). This involves formulating rules of thumb with abnormality predicates and then 

restricting the extension of these predicates – circumscribing  them – so that they 

apply to only those things to which they must apply, given the information currently 

available. Take the Tweety case again. We render the rule of thumb that birds typically 

fly as the following conditional, where ‘Abnormal’ signifies abnormality with respect 

to flying ability:  

∀x(Bird(x) & ¬Abnormal(x) → Flies(x)). 

This does not, of course, allow us to infer that Tweety flies, since we do not know that 

he is not abnormal with respect to flying ability. But if we add axioms which 

circumscribe the abnormality predicate so that it applies to only those things which 



 

 4 

are currently known to be abnormal in this way, then the inference can be drawn. This 

inference is non-monotonic, since if we were to add the premise that Tweety is 

abnormal with respect to flying ability, then the extension of the circumscribed 

predicate would expand to include Tweety and the inference would no longer go 

through. Unlike the other strategies mentioned, circumscription can be formulated 

using only the resources of first-order predicate calculus, though its full development 

requires the use of second-order logic, allowing quantification over predicates. 

Each of these approaches has its own strengths and weaknesses, but there are some 

general issues that affect them all. One problem is that they all allow for the derivation 

of multiple incompatible sets of  conclusions from the same premises. In default logic, 

for example, a theory may have different extensions depending on the order in which 

the rules are applied. The standard example is the theory that consists of the premises 

Nixon is a Quaker and Nixon is a Republican, together with the default rules Quakers 

are typically pacifists and Republicans are typically not pacifists. Each of these rules 

blocks the application of the other, since the consequent of one is incompatible with 

the justification of the other. The theory thus has two incompatible extensions – one 

in which the first rule is applied and containing the conclusion that Nixon is a pacifist, 

the other in which the second rule is applied and containing the conclusion that 

Nixon is not a pacifist. Similar results occur with the other approaches mentioned. 

The existence of multiple extensions is not in itself a weakness – indeed it can be 

seen as a strength. We might regard each extension as a reasonable extrapolation from 

the premises and simply plump for one of them. (This is known as the credulous 

strategy. The alternative sceptical strategy is to endorse only those claims that appear 

in every extension.) In some cases, however – particularly in reasoning involving time 

and causality – a plausible theory generates an unacceptable extension. Much work 

has been devoted to this problem – one strategy being to set priorities among default 

rules, which determine the order in which they are applied and so restrict the 

conclusions that can be drawn. (A much-discussed case is the Yale shooting problem, 

introduced in Hanks and McDermott 1987, where the rule of thumb that living things 

typically stay alive generates an unexpected conclusion in reasoning about the effects 

of using a firearm. For a description of the scenario, see FRAME PROBLEM entry and 

for discussion, see Shanahan 1997.)  

A second problem concerns implementation. The goal of much work in this area 

is to build artificial non-monotonic reasoning systems, but the formal approaches that 

have been devised are not easy to implement. Default logic, for example, requires 

checking sets of sentences for consistency, and there is no general procedure for 

computing such checks. Restricted applications have been devised, however, and 

aspects of non-monotonic reasoning have been effectively implemented using the 

techniques of logic programming (programming in languages based on formal logic).  

A third issue concerns the piecemeal character of much work in this area. Theories 

have been developed and elaborated in response to particular problem cases and with 

relatively little attention to the features of the inference relations they generate. Recent 

work has begun to address this issue and to identify properties that are desirable in 
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any non-monotonic inference relation (see, for example, Makinson 1994). One of 

these is that adding a conclusion back into the premise set should not undermine any 

other conclusions – a property known as cautious monotonicity.  

Finally, a word about probabilistic logics. Most non-monotonic formalisms 

embody a qualitative approach: premises and conclusions are treated as either true or 

false, as in deductive logic. But probabilistic logics, in which propositions are assigned 

continuous probability values, can also be used to model certain types of non-

monotonic inference. In probabilistic reasoning it is common to treat a conclusion as 

warranted if its probability, given the premises, exceeds a certain threshold. This 

inference relation is non-monotonic, since the addition of new premises may lead to a 

readjustment of one’s probability assignments, with the result that a conclusion which 

previously passed the threshold now falls short it. However, although probabilistic 

logics are well-suited for modelling reasoning under uncertainty (see Shafer and Pearl 

1990), it is unlikely that they can do all the work required of a theory of non-

monotonic inference (McCarthy 1986). 
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